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Instrumentation Requirements 

• Low TRL level Proof-of-Concept evaluation 

 Macroscopic device performance 

 Relaxed spatial and temporal requirements  steady 

 Moderate levels of accuracy 

Test Goals Drive Instrumentation Needs 

• Validation & Verification Testing1-5 

 Macro & microscopic device performance 

- near-field performance, far-field boundary conditions  

- Accurate model characterization 

 Refined spatial and temporal resolution  dictated by physics at model scale 

- Steady and dynamic measurements 

 Increased levels of accuracy  documented uncertainty 

• Low – Mid TRL Level Concept Development Testing 

 Macro & microscopic device performance 

- Powering, loads, near-field performance characterization 

 Refined spatial and temporal requirements  steady and dynamic  

 Moderate levels of accuracy 
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Measurements 

Structural / Mechanical 

 Device & component loads  

 Device & component motion 

 Vibration & radiated sound 

Flow 

 Flow and velocity ▪    Acoustics 

 Pressure ▪     Fluid properties 

 Cavitation  

Invasive vs Non-Invasive Instrumentation 

 

Impact on Performance 

Non – Invasive Instrumentation is Preferred Laboratory Measurement  

 Model integrity  impact of sensor installation on component function 

 Flow interference  alter flow field or impact flow measurement 

 Noise or vibration source  instrument vibration or elevated background noise 
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Instrumentation State of the Art 

Structural / Mechanical 

• Steady & low frequency loads   strain – gaged based multi-degree of freedom load cells 

• 6-DOF: Fx, Fy, Fz, Mxz, Myz, Torque 

• Water-proofed & can be rotated 

• Device & component motion 

 Shaft rpm  optical and electrical encoders 

 Component and Device motion & deformation  optical systems (non-invasive), 

acoustic displacement sensors (invasive) 

• Component noise  hydrophones, acoustic arrays, dynamic pressure 

• Component vibration 

 Invasive  strain gages, multi-axis accelerometers 

 Non-invasive  High mag / high speed imaging, laser Doppler Vibrometry6 

• Displacement and velocity 

• Single-point and scanning 

• Small and large amplitude vibration 

• Good spatial and temporal resolution 

• Unsteady & high frequency loads   Piezoelectric based sensors 

www.polytec.com 
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Flow 

• Flow   Mass (gas): thermal mass flow meters 

 Volume (liquids): magnetic & ultrasonic flow meters 

Velocity 

• Invasive   Pressure Based:  multi-holed Pitot type probes 

 Multi-component, single point 

 Calibration important 

 Directional sensitivity 

 Mean velocity – turbulence 

www.nasa.gov 

• Invasive  Thermal Anemometry7,8 

 Multi-component, single point 

 Low noise, high spatial and temporal resolution 

 Calibration important – non-linear 

 Directional & fluid property sensitivity 

 Mean velocity & turbulence 

 Wires  gases;   films  liquids 

www.tsi.com 

Instrumentation State of the Art 

Flow & Velocity 
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• Invasive   Acoustic: ADV & ADCP9-11 

 Measurement acquired off backscattered acoustic signals from dispersed particles 

 Multi-component, single point or line scan 

 Reasonable dynamic range & good accuracy 

 Relatively low sampling rate and large measurement volume 

 Mean velocity,  turbulence? 

 Bias errors associated w/ particle sampling(velocity & gradient) 

 Aliasing 

 High noise floor 

www.nortekusa.com 

 Acoustic beams focused onto 

single volume 

 Meas. Vol. O(0.1 cm3), Fs O(100Hz) 

 Deployment can be fixed or 

moving 

 Turbulence measurements 

possible (though spatial averaging 

&  noise still an issue) 

 Motion compensation 

 Improved resolution 

 Improved processing 

Image courtesy of SonTek 

(www.sontek.com) 

ADV 

Image courtesy of RDI 

(www.rdinstruments.com) 

 Acoustic beams (3 or 4) divergent 

 No single defined meas. volume 

 Deployment can be fixed or moving 

 Accurately determine mean 

velocities through a selected 

column of water 

 Wave height 

 Turbulence?  

o Improved  turbulence meas.  

ADCP 

Instrumentation State of the Art 

Velocity 
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• Non-Invasive   Laser Doppler Velocimetry12 – ~50 years  Gold Standard Meas. 

 Measurement acquired off scattered light from dispersed particles 

 Multi-component, single point 

 High dynamic range & accuracy 

 High spatial O(10-8 - 10-5 cm3) & temporal resolution O(kHz) 

 Short and long stand-off 

 Mean flow & turbulence 

 Bias errors associated w/ particle sampling – well known and correctable 

 Elevated noise floor relative to thermal anemometry 

Photo courtesy of Marin, the Netherlands 

Flow with particles 

d (known) 

Velocity = distance/time 

t (measured) 

Signal 

Time 

Laser 
Bragg 

Cell backscattered light 

measuring volume 

Detector 

Processor 

phase-locked LDV Muscari et al.13  

Dantec Inc. 

Instrumentation State of the Art 

Velocity 

www.TSI.com & WWW.Dantec.com 
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• Non-Invasive   Particle Image14 and Particle shadow15 Velocimetry – ~80 years 

 Measurement acquired from imaging dispersed particles or particle shadows 

 Multi-component, multi-point 

 PSV/PSA16: Velocity & Acceleration, FSI 

 Planar and volumetric – Instantaneous snapshot of flow 

 High dynamic range & accuracy 

 Good spatial and temporal resolution (kHz) 

 Mean flow & turbulence 

 Bias errors associated w/ particle sampling – well known and manageable 

Etebari et al. 19 
Felli et al.17,  

Axial, Vz 

Vx     Cross-Plane     Vy 

Vorticity 

Hydrofoil Tip vortex20  Atsavapranee et al.18  

Pereira,21 
gas void fraction 

LED Lamp

Diffuser

Flow Field

Image Plane

Frame A Frame B

time

Instrumentation State of the Art 

Velocity 

PIV SPIV Multi-Color 

PSV/PSA 

DDPIV 

Dantec 

Dowell et al.15  

Burst/Sweep 

Acceleration 



Instrumentation State of the Art 

PIV 

Axial Flow 

Wake Structure 
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Instrumentation State of the Art 

Velocity 
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Dantec 

Dowell et al.15  
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Pressure 

• Dynamic   Piezoelectric & Strain-gaged Bridge 

 Piezo:  AC, high frequency, sensitive to vibration 

 Strain:  DC to high frequency, vibration compensated. 

 Water-proofing ? 

Instrumentation State of the Art 

Pressure, Cavitation & Acoustics 

Cavitation 

• Visual 

 

 

• Acoustic22, 23  hydrophone, Dynamic 

pressure and Accelerometer 

 Wavelet analyses 

LE 

cavitation 

Wall Shear 

Surface Wall Shear & Pressure Gradient 

 ISSI Inc. 

• Mechanical balances 

• Oil films 

• Liquid crystals 

• Thermal sensors 

• Near-wall velocity sensors 

• Surface Stress Sensitive (S3F) films24 



• Intrusive   Resistive, Servo and Capacitive Probes 

 Difficulties can include: 

 Meniscus reversal and wave scattering around probes 

 Fluid loading on probe – vibration 

 Air entrainment due to mean flow separation around probe 

 Non-linear behavior in shallow water 

 Drop-outs 

12 

• Non-Intrusive   Ultrasonic and Optical Systems 

 Ultrasonic – typically used in above wave application 

 Good accuracy relative to intrusive. 

 Performance gain with roughened surface increasing diffusive reflection 

 Drop-outs 

 Optical – Imaging based 

 Automated Trinocular Stereo Imaging System (ATSIS)- Wanek and Wu25 

 Grid projection techniques 

Instrumentation State of the Art 

Wave Height 

Zhao26 



• Non-Intrusive   Ultrasonic and Optical Systems 

 Ultrasonic – typically used in above wave application 

 Bottom mounted systems – AWAC27  

- 3-beam ADCP with a 4th beam for water surface elevation 

 Optical – laser based 

 Global laser Rangefinder Profilometry (GLRP)28 – point based 

 Laser light sheet based systems 

 Optical – Imaging based 

 Light Detection and Ranging Systems (LiDaR)27   

13 

Atsavapranee et al. 28 

GLRP 

Carneal et al.29 

Instrumentation State of the Art 

Wave Height 
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