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2n The Ocean Energy and Waves group %
_ @ LHEEA Lab.

LHEEA Lab. : Hydrodynamics, Energetics and Atmospheric Environment
Staff : 100, Director : Prof. Pierre Ferrant

Ocean Energy and Ocean Waves Group DyRAC | DSPM | DSSM | DAUC | TSM
Staff : 18, Head : Aurélien Babarit

Research topics :

1. Ocean wave propagation and complex sea states

Deterministic wave propragation, wave breaking, wind/wave coupling, freak wave statistics, wave propagation over
complex bathymetry

2. Hydrodynamic peculiarities of MRE applications
Large amplitude motion of Wave Energy Converters, wave interactions in arrays, aero-hydrodynamic coupling in
seakeeping of offshore wind turbine

3. Control and optimisation of MRE systems
Development and validation of control algorithms for isolated and arrays of MRE systems.

Tools :

Large scale facilities Full scale test site SEM-REV
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Experiments: wave + wind large tank

LHEEA Lab. : Hydrodynamics, Energetics and Atmospheric Environment

1/50th offshore wind turbine in waves

A floating multiple OWC device in waves
1/20th scaled PELAMIS WEC tested at ECN
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Numerical WEC modeling: the ultimate goal @

Long term simulation of large arrays of
WECs in conditions as close as possible
from real exploitation and/or  survival

conditions.

detailed engineering of the device (computation of
maximum forces, loads, stresses, motions, deformations ,

etc..)

assessing the energy production in any given sea state

assessment of physical impact on the environment

optimizing the device, optimizing the farm
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Complete WEC modeling: the ultimate goal @

Simulation of large arrays of WECS in
conditions as close as possible from real
exploitation and/or survival conditions.

‘ Time domain rather frequency domain ; CPU time << real physical time
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Complete WEC modeling: the ultimate goal @

Simulation of large arrays of WECS in
conditions as close as possible from real
exploitation and/or survival conditions.

Time domain rather frequency domain ; CPU time << real physical time

100+ machines on sea surface area > 100+ km?

comput. domain from local to regional

accounting for hydrodynamic interaction beween devices
Device/device , farm/grid electrical interaction (PTO), farm management
softw.

)
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Viscous fluid hydrodynamics, wind-wave-current interaction
Normal to severe sea state energy levels, nonlinear hydrod. modeling
real (variable) bathymetry resulting in

space modification of incident sea state (energy losses, refraction,
diffraction, etc..)
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Complete WEC modeling: the ultimate goal @

Simulation of large arrays of WECS in
conditions as close as possible from real
exploitation and/or survival conditions.

Time domain rather frequency domain ; CPU time << real physical time

O O O O

O O O O

100+ machines on sea surface area > 100+ km?

comput. domain from local to regional

accounting for hydrodynamic interaction beween devices

Device/device , farm/grid electrical interaction (PTO), farm management softw.

Viscous fluid hydrodynamics, wind-wave-current interaction
Normal to severe sea state energy levels, nonlinear hydrod. modeling
real (variable) bathymetry resulting in

space modification of incident sea state (energy losses, refraction,
diffraction, etc..)

past breaking wave models and algorithms (SPH) & fluid structure interaction
Fail-soft simulation mode
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WEC modeling:

available LHEEA softwares @

time
variable
AQUAPLUS frequency
domain
ACHIL-3D time
domain
LAMSWEC time
domain
ICARE- time
SWENSE domain
SPH-FLOW time-domain

fluid
model

perfect
fluid

perfect
fluid

perfect
fluid

viscous
fluid
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Moving FS

SWENSE
decomposition
+ HOS

Violent flows
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10l AQUAPLUS

Frequency domain .
Linear potential flow (solve for velocity potential) " ]
Boundary element method (BEM) N AW
Kelvin Green function for sources & dipoles i L
(CPM-low order WAMIT equivalent) ;/ /

Oth order sources distribution over each panel | /
Multiple independent interacting bodies (<10) v~
Calculation of drift forces S

NE— 4x16 panels 1%

CM33

~eme 4%36 panels

\\ 4x49 panels —i 0.1

4x64 panels

CL33
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Solve in parallel for elementary potentials ®;. provided ¢; = R. [©;e™]

Ad; = 0 in the fluid domain = < 0 outside hody surface
D : _ : :
8""J —ko®; = 0 on the mean free surface z = 0 outside body surface
oD : : :
5 = n; on the wetted surface of the WEC
an
Then potentials velocity pressure Hydro.forces : Cy, and C,

[_~'='? (M + Cprlw)) +wCal(w) + KH: X=F.. +Fpro+ Fi-'.mr:-.'r':';-tg

Finaly motions (velocity) X PTO forces absorbed power

X = Xe“t  F=Fet
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ACHIL3D Tt

L _'I. I___' x A\Y

Time domain.
Linear potential flow (solve for velocity potential)
Generalized deformation (1 potential solution/panel)

Boundary element methOd (BEM) ? '\ original fun¢tion
Kelvin sources & dipoles "T \ > exfjonential fitting
Clement's 4th order ODE for Green function calculatior _ i
Oth order sources distribution over each panel ol \ ;mw
Multiple independent interacting bodies (<10) 05¢ \w r
o . 1o 25 5 75 10 125 15
Solve for ®;(t) after a velocity impulse of panel | | |
Ap; = 0 in the fluid domain = < 0 outside body surface
E}?{I}j é‘f{l}j i ) ) ]
52 +g 5, = 0 on the mean free surface z = 0 outside body surtace
3’"’3‘ . - e
9 = a(t).n; on panel ; of the WEC,
b,
1 =0 on other panels
an
Then ®;(%) radiation and wave excitation IR by integrating over the body Z

(M + pe..) X—f H[f—r)}t{r}rﬁ'.——[K L+ Ky X = / H..(t—7)n(7)d7+F pro+F mooring
0 0
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ACHIL3D ...l... )

The time domain Green function x M @Y.-Z)

9 Y
F(r, Z:t) =2 / ) e VK sin[V Kt dK. @,7}(/
,-—"""'ﬂ‘“ P

solution of a 4th order ODE

B*F d°’F (t* é‘EF Tt 3F 9

2

luth ata ( +4“‘R1 4 at 4F 0 f(xyz)
source point

RK4 scheme fast and accurate on-line evaluation of the Green function

A.H. CLEMENT (1998), An ordinary differential equation for the Green function of time-domain free-surface
hydrodynamics. Journal of Engineering Mathematics, 33 (2), pp.201-217

t

<
| X MEYD
- _ < field point
I 7%

M+p ) X=F.,-BX- [ Hit—7)X(r)dr — (K+Kz)X
0
N j 11\ —— original fung¢tion
. a 1.5 F
Pronys method h[t} — Z ﬂre:'r t) | \ < exponential fitting
3 Nij o fa) x o
% . NS () 0.5 A
f}m_; ydr s(t) = | 2yt gt Surld) ST T«

> et 2y S1yr(t) 15 25 5 75 0 125 15
0

\ c’u?(ﬂ = Sjj;-séjr' + a:erJ(ﬂ

G. DucLos, A.H. CLEMENT, G. CHATRY (2001) : Absorption of outgoing waves in a numerical wave tank using a self-adaptive

boundary condition . Int. Journal of Offshore and Polar Engineering, Vol11, n°3, pp.168-175
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ICARE-SWENSE (CFD for wave problems) @

SWENSE = Spectral Wave Explicit Navier-Stokes Equation

Functional decomposition of primitive variables in Navier-Stokes eq.
(U* =U* +U*

P=P tPp a e {1’293}
\h =h, +h,

I\

Explicit incident flow: nonlinear potential model (HOS method)

Diffracted flow: Solved by a modified RANSE solver

i a 2rra "
Up Ug—a—uf U —(u+ut)an+laPD:—U{, (v+u) Jou 0 Ug)
ot ox’ ) Ox; ox;”  pox, ox’ ox,

Example of the modified momentum equation

C. Monroy, G. Ducrozet, F. Bonnefoy, A. Babarit, L. Gentaz and P. Ferrant (2011) RANS Simulations of CALM Buoy in
Regular and Irregular Seas Using SWENSE Method , International Journal of Offshore and Polar Engineering, Vol.
21, No. 4, pp. 264-271
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ICARE-SWENSE

Comparisons experiments/numerics

JIP CALM buoy in 3D irregular waves (Jonswap spectrum,
Tp=1.2s, Hs=0.12m at model scale)

courtesy of Principia RD

Ey (N)

Good agreement after 115 wave periods !
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Example of current coefficient calculation (side force)
Comparisons CFD / experiments
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LAMSWEC @

Large Amplitude Motion Simulation of Wave Energy Converters (~LAMP2 ?)

Time domain. potential flow

Panels over the full body

Body and free surface moving at each time step
Froude-Krylov forces= integration of pressure over the
wetted surface of the displaced body

o Radiation problem = linearized around mean position (1st
+2d order)

o Radiation problem = linearized around mean position (1st
+2d order)

o Boundary element method (BEM) (like ACHIL3D)
o CPM - Kelvin sources & dipoles (like ACHIL3D)

O O O O

Static and dynamic pressures Integrated over the wetted hull
Ps = P, — P gz, <o<z<7(t) Frio(G,t)= || (ps+ pp)ndS
C(t)
aﬂ, 1 v 2 3 - -
Po="P| *, 'y M, o(GD)= |) (Ps + )| GM x7)dS
| (1)
Nonlinear incident wave model : Fenton-Rienecker (regular waves)
HOS (irregular waves)

J.C. GILLOTEAUX, A BABARIT, G. DUCROZET, M. DURAND, AH. CLEMENT (2007) Non-linear potential model to predict large
amplitude motions: application to the SEAREV wave energy converter. Proceedings OMAE2007 Conference. San Diego (USA).
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,, LAMSWEC: Comparison numerical / experimental modeling %

1/12 scale model of the SEAREV Wave Energy Converter in the LHEEA wave tank
= HI|IIII_

LAMSWEC was able to predict parametric roll instabilities
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WEC modeling softwares: current developments @

time fluid hydro PTO CPU
variable model Body model model time

AQUAPLUS frequency perfect > 20 Linear BEM Linear ++ toward large arrays
+ domain fluid (Kelvin CPM)  damping
multipole +
multipole
j ' rm o Ptlﬁ (CO"gxw) —ista,, . . O . H 5
2L 0 MP2L Coef faromy ' \ L " 12
¥ i 44 L1
: : | ] e (1}9
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B. BORGARINO, A .BABARIT, P; FERRANT (2012) Impact of wave interaction effects on energy absorption in large arrays of
wave energy converters Ocean Engng , Vol41.

B. BORGARINO, A .BABARIT, P; FERRANT (2011) an implementation of the fast multipole algorithm for wave interaction problem
on sparse arrays of floating bodies. J.Engng.Math.
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WEC modeling softwares: current developments @

time fluid N- hydro PTO CPU
variable model Body model model time

AQUAPLUS frequency perfect > 20 Linear BEM Linear + ++ For coastal OWC

+ domain fluid (Kelvin CPM)  damping
3
2
i
"3

op on S;
B @, |PF ’ '
¥ o -5

0 on S, @ (rad 5—1}

A. BRITO-MELO, T. HOFMANN, A.J.N.A SARMENTO, A.H. CLEMENT, G. DELHOMMEAU (2001): Numerical Modelling of

OWC-Shoreline Devices Including the Effects of Surrounding Coastline and Non-flat Bottom ; Int Journal of Offshore and Polar
Engineering, Vol11, n°2, pp.147-154

LAMSWEC time perfect 1 RANSE nonlinear ++ + SWENSE
+ weak domain fluid (finite diff.) decomposition
scatterer + SWENSE + HOS

* linearization around the exact position of the undisturbed free-surface flow

+ discretization of body + free-surface around it.

>
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*® SPH methods (violent flows, wave breaking, etc..) @

@ Meshless methods ; variables represented by space convolutions integrals over a
neighbouring of the current point

f(F) = /f(ff) W(F— X, h)dx,
D

[(7) ~ / A x}VW — X)d¥x,
@ no linear system to solve @ implementable on parallel computers
@ allow for numerical modelling of wave breaking
@ adapted to overtopping WECs T

@ allow for hydroelasticity and multiphase simulations

Oger M., Doring M., Alessandrini B., Ferrant P. (2006) Two dimensional SPH simulations of wedge water entries. J. Comp.
Physics. 213-2,pp.803-822
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