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Question

» At what level of resolution (speciation, spatial, and
temporal) and accuracy do BC emissions inventory
uncertainties become significantly less important
than uncertainties due {o other climate model
inputs and formulation when estimating both global
climate forcing effects and impacts on regional
hydrological cycles?




What is the challenge?

* Precipitation is the major driver of land surface
hydrology that governs water resources; yet it is
the most uncertain part of the hydrological cycle

» Globally, precipitation (P) is balanced by
evaporation (E), i.e., P = E = 2.8 mm/day; but
regionally P - E varies significantly

» Partition of P — E: soil moisture, snowpack,
runoff

» Challenge: Large temporal variability, large
spatial variability, the extreme matters —
floods/droughts
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What Controls Precipitation?

In most regions, local evaporation contributes no more than
30% of moisture for P, so P is largely controlled by
atmospheric moisture flux

Large scale moisture transport is governed by circulation
induced by heat sources and sinks (e.g., land-sea contrast,
elevated heat source of large topographic barriers)

Not all moisture flowing through produces precipitation;
need rising motion to produce condensation (e.g.,
extratropical storms, orographic forcing, mesoscale
convective storms, turbulence)

Cloud microphysics has large control on precipitation
characteristics



How will the Global Hydrological Cycle Be
Affected by Climate Change?

Greenhouse warming increases evaporation (Clausius-
Clapeyron equation); increased evaporation increases
precipitation (P = E globally)

Global mean land average rainfall has decreased by 2.33%

per °C since the 1950s despite warmer temperature (Hulme
et al. 1998)

Fossil fuel BC emissions have increased by about a factor
of 2.5 since the 1950s

Increase in BC and other aerosols reduces surface solar
radiation (R), reduced R must be balanced by reduced E;
decrease E leads to decrease P

Ramanathan, Crutzen, Kiehl and Rosenfeld, Science 2001
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Some Issues in Climate Modeling

* Climate models are used to sort out the various
forcing and response and for making predictions

» To estimate GHG and air pollution effects on
regional hydrological cycle, spatial heterogeneity
in aerosol forcing and hydrological response
must be addressed




How Well Can We Simulate Regional Precipitation?

15 sub—regions based on UW data

130W 120W 110W ' ' ' 6OW

1. Northwest and Columbia 5. Rio Grande 9. Great Lakes Drainage 13. East Coast
2. Californig . Missouri River 10. Upper Mississippi

3. Great Basin . Arkansas—Red 11. Lower Mississippi

4. Colorado River . South Central (Gulf) 12. Ohio




Regional Climate Model Driven By GCM:
Annual Mean Temperature and Precipitation
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Sensitivity to Boundary Conditions
and Model Formulations

Columbia River Basin
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Sensitivity is Regime Dependent

India+Tibet plateau
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How Much Confidence Can We Have
in Projecting Changes in Regional
Hydrological Cycles?
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An Ensemble of Future Climate
Conditions Simulated by a GCM
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Snowpack Changes

Lead to significant changes in streamflow affecting hydropower
production, irrigation, flood control, and fish protection

Surface Temperature Change (C) Change in Annual Mean Snowpeck (%)




Trends in April 1 SWE, 1950-2000

Relative trend in Apr 1 snow water equivalent, 1950-2000




Current and Future Streamflow in the
Yakima River Basin
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Snowmelt flows have been starting earlier

“Center Timing”
of many
snowmelt
watersheds
has advanced
by 1-4 weeks
earlier across
the West during
last 3 decades
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Aerosol Effects on Regional Climate in
South Asia

Two 10 years RCM simulations driven by the
NCEP/NCAR reanalysis were performed with and
without INDEOX forcing
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Observed and Simulated Temperature
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Observed and Simulated Precipitation
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Change in Sfc Energy Budgets
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Signal vs Noise

S.D. of Precipitation Precipitation Change




Summary

Large spatial and temporal variability of precipitation
presents a great challenge in simulating the
regional hydrological cycle

RCMs can improve simulation of land surface
nydrology (seasonal mean, rain rates)

Regional simulations are sensitive to lateral
boundary conditions and model physics

Robust hydrological response may be found as a
result of threshold and/or positive feedback effects




Summary

Impacts of BC on regional hydrological cycle are
likely smaller than model bias

Model bias can have large impacts on estimating
hydrological response

Until we find coherent and robust signals, model
uncertainty will likely dominate over uncertainty in
BC emission in simulating hydrological response

How is uncertainty in temperature and precipitation
signals related to uncertainty in BC emission? How
much change in water cycle can we tell by
temperature signal alone?



